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We show that a variational implementation of probability density function
(PDF) closures has the potential to make predictions of general turbulence
mean statistics for which a priori knowledge of the incorrectness is possible. This
possibility exists because of realizability conditions on "effective potential"
functions for general turbulence statistics. These potentials measure the cost
for fluctuations to occur away from the ensemble-mean value in empirical
time-averages of the given variable, and their existence is a consequence of a
refined ergodic hypothesis for the governing dynamical system (Navier-Stokes
dynamics). Approximations of the effective potentials can be calculated within
PDF closures by an efficient Rayleigh-Ritz algorithm. The failure of realizability
within a closure for the approximate potential of any chosen statistic implies
a priori that the closure prediction for that statistic is not converged. The
systematic use of these novel realizability conditions within PDF closures is
shown in a simple 3-mode system of Lorenz to result in a statistically improved
predictive ability. In certain cases the variational method allows an a priori
optimum choice of free parameters in the closure to be made.

1. INTRODUCTION

Despite a century or more of effort in the modeling of turbulent flows since
the pioneering works of Boussinesq(1) and Reynolds,(2) it seems fair to say
that predictive methods are still not available. An excellent review of the
modeling research up to modern times is given by Speziale.(3) The main
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conclusion may be stated as follows: Because there is no clear-cut separa-
tion of time- or length-scales in turbulent flows and no small parameter for
expansion in nonlinearity, it is impossible to derive systematically equa-
tions of motions for averages by statistical methods, unlike some other
areas, such as kinetic theory of gases. While models adequate to reproduce
experimental data for many given flow conditions have been devised, the
resulting closures are notoriously unreliable when applied to new situa-
tions. In other words, the models are really only postdictive. By this we
mean that the models can, with appropriate adjustment of parameters, be
made to yield reasonable fits to existing data from experiment or simula-
tion. However, this is of very limited use from a practical point of view,
because in actual engineering problems one is interested to employ the
theory precisely to predict new regimes. If experimental or simulation data
were readily available, then there would be little need for the theory! For
example, in aeronautical engineering the closure models may be used at
most as a crude guide for actual design, which must then be refined in sub-
sequent expensive testing, either by putting scale models in wind tunnels or
by test piloting. An optimistic appraisal of the current approach to tur-
bulence modeling—which we believe warranted—is that it does yield some
insight into the basic physics of the turbulent flows. However, a more
pessimistic point of view having also some justification is that the existing
turbulence models are little more than sophisticated summaries of the
databases from which their parameters are determined. It is not possible to
make truly reliable predictions from such models. In general, it is
impossible to say a priori whether the deductions from such models are in
close agreement to reality or very far from the truth.

One exception to this general rule is for turbulence statistics which
satisfy a realizability condition arising from the positivity of the statistical
distributions over turbulent flow realizations. Examples are second-order
statistics such as energy spectra and Reynolds stresses, which inherit
positivity properties from the underlying distributions. To our knowledge,
the recognition of the importance of such realizability conditions and their
systematic exploitation in turbulence modeling is due to Kraichnan(4,5) (see
also ref. 6). Realizability has also been introduced as a fundamental con-
straint in Reynolds-stress closures by Schumann(7) and Lumley.(8) A tur-
bulence model prediction which violates such a realizability condition is
necessarily badly in error for that statistic. Unfortunately, this tool is only
of limited usefulness since the first-order turbulence statistics of greatest
engineering interest—such as mean velocity or pressure profiles—do not
possess obvious realizability constraints. Furthermore, relatively crude
models of the second-order statistics (which are limited by realizability
conditions) may suffice to give adequate predictions of the first-order
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statistics. Thus, a failure of realizability for the second-order statistics,
especially if it occurred in a remote wavenumber range or for peculiar flow
situations, need not imply that the model predictions for first-order
statistics are badly in error.

Our purpose in this paper is threefold:
First, we shall explain that there are realizability conditions associated

to all turbulence statistics, including first-order quantities such as mean
velocity profiles. These realizability conditions result from a refinement of
the standard ergodic hypothesis. According to this refinement, empirical
averages over a finite time-series of the given variable will have fluctuations
away from the ensemble-mean value whose probability decays exponen-
tially in the duration (or length) of the series. The rate of decay in the
statistical steady-state is governed by a so-called effective potential, which
is a function of the possible values of the considered variable. Realizability
requires that this potential function be nonnegative, convex and vanish
only at the ensemble-average value. These effective potential functions are
also closely connected with ideas of Onsager(9) on action principles for
nonequilibrium fluctuations. This theory has been discussed earlier in
refs. 10 and 11.

The second goal of this paper is to show that there is a practical,
efficient method to calculate approximations to the effective potential within
PDF-based moment closures, via a Rayleigh-Ritz: variational scheme.
PDF-based closures, such as the mapping closures,(12,13) the generalized
Langevin models,(14, 15) Fokker-Planck closures,(16) etc. have been devel-
oped particularly in the last decade as more complete models of turbulent
flow than traditional moment-closures. They contain much more statistical
information about the random fields and, in particular, suffice to recover
the effective potential function. The Rayleigh-Ritz method for that purpose
has been discussed previously.(10,11) It has also been shown in a simple
Langevin model to yield a computationally convergent scheme for the
exact effective potential.(17) As we shall show here, the variational scheme
can also, in favorable cases, determine a priori an optimum value of free
parameters within the closure, i.e. independent of fitting to empirical data.

Our final, and main, purpose in this work will be to show that the
satisfaction or failure of the realizability conditions on the approximate effec-
tive potential is a sensitive diagnostic of the reliability of the closure predic-
tion for the average of the particular variable considered. To be precise,
nothing can be inferred if the effective potential realizability conditions are
satisfied within the closure: the predictions may then be either good or bad
(just as with traditional realizability conditions). However, failure of
realizability of the approximate potential will be seen to imply that the
closure prediction is poor for the considered variable. This will be argued
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from the relation of the effective potential to the fluctuations of the given
random variable. It will also be demonstrated by concrete computations in
a simple 3-mode caricature of the Navier-Stokes dynamics, first considered
by Lorenz. Some of these results have been briefly reported elsewhere.(18)

To keep things simple and concrete, all of the closures considered in
this work will be for this same system of Lorenz.(19) The dynamics is
defined for three real variables xi, i= 1,2, 3 via the stochastic differential
equations

with i, j, k a cyclic permutation of 1, 2, 3, with interaction coefficients Ai

i= 1, 2, 3 subject to the constraint

guaranteeing conservation of energy E=1/2Ei,x
2
i by the nonlinear terms,

with positive damping coefficients v i>0, i= 1, 2, 3 and with fi, i = 1, 2, 3
random Gaussian forces of zero means and covariance

for k i,>0, i=1,2, 3, i.e. white-noise in time. This model has been often
used before as a simple first test of turbulence closure ideas: DIA,(20)

resummed perturbation theory schemes,(21) and Wiener-Hermite expansion
methods(22) The advantage is that the ideas may be cleanly tested in a
situation where direct numerical simulation (DNS) of the dynamics is
trivial. As we shall see in the main body of this paper, the new realizability
conditions perform very well as closure diagnostics in this simple model.
This motivates the exploration of their effectiveness in PDF closures for
Navier-Stokes turbulence, which we have now underway.

Assuming that similar results hold for Navier-Stokes dynamics, we
believe that this points toward significant new directions in turbu-
lence modeling. In the first place, there is a now a practical impetus to
pursue PDF-based closures, both to develop further the existing PDF
methods(12,13,14,15) and to explore new ones. For example, the "synthetic
turbulence" models of ref. 23 may be a promising avenue to explore. In
fact, these methods seem to be the only ones with a potential to have real
predictive power. Note that the new realizability conditions on effective
potentials used in conjunction with PDF closures cannot eliminate the
need for a posteriori testing of the closure predictions. Since even poor
predictions might be consistent with realizability, it would be most unwise
to use any kind of realizability condition as a sole check of the closure.



However, applied as an a priori "screening" of closures, the realizability
check on effective potentials might detect a sizable fraction of poor predic-
tions in advance and thus reduce the need for subsequent expensive testing,
design refinement, etc. In this way, the effective potential realizability check
could have great economizing capability, particularly if the check is easy
and cheap itself to perform. The method proposed should, in short, result
in a statistically-improved predictive ability, i.e. a greater fraction of tur-
bulence closure predictions which pass the "screening" should be accurate.
The challenge is then to develop PDF-based closure methods which incor-
porate such checks and which, at the same time, are adequate to describe
the desired range of phenomena.

The precise contents of this work are as follows: In the following
Section 2 we briefly review the theory of the refined ergodic hypothesis and
the properties of the associated effective potential function. We also review
there the Rayleigh-Ritz method of computation and its relation to PDF-
based moment closures. With this as background, we consider in Sec-
tions 3-5 three distinct PDF closures for the previous 3-mode model,
namely, truncated Hermite-polynomial expansions, a "chi-square" Ansatz,
and a "twisted-Gaussian" Ansatz. In particular, closure predictions for
various statistics shall be computed and compared with DNS of the
models, and as well the Rayleigh-Ritz effective potentials for those
statistics shall be computed. In the conclusion, Section 6, the results will be
reviewed and some general directions for future work discussed. There are
finally a series of Appendices that contain some information auxiliary to
the main text. The Appendix I discusses some of the properties of the
3-mode dynamics, Eq. ( 1), and its statistical solutions. In Appendix II some
technical results are given on optimization over parameters. Finally, in
Appendix III there are listed various quantities in the PDF closures
considered, which are used in the numerical calculation of the effective
potentials.

2. THE EFFECTIVE POTENTIAL AND THE
RAYLEIGH-RITZ METHOD

2.1. The Refined Ergodic Hypothesis and Effective Potential

We shall now briefly discuss the refined ergodic hypothesis and the
role of the effective potential in that theory. A more detailed account has
already been given in refs. 10 and 11, so that we can be rather brief here.
Consider any chosen set of random variables W = ( W1, W2,..., WN}. These
could be .x-components of velocity Wi, = u ( r i ) at some selected set of
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points ri, i = 1,..., N in a turbulent flow, or they could be instead the square
velocity fluctuations Wi, = (v f(r i))2 , with v'(r i) = v(r i) - v(r i), in the same
flow, etc. Any random variable of interest may be considered and the
remarks we make here are completely general. Let us introduce the empiri-
cal time-average

over the time-series W(t) of duration T. Of course, the standard ergodic
hypothesis states that, with probability = 1 in each realization of the
system,

where w = < W > is the ensemble-average value of the set of random
variables. This hypothesis has never been proved for Navier-Stokes tur-
bulence, but it is quite generally accepted as valid (e.g. see Sections 3.3 and
4.7 of ref. 24, or Section 4.4 of ref. 25). We now propose the following
refined ergodic hypothesis that

where Prob{ Wr= w} is the probability that the empirical average WT over
time-interval [0, T] takes on the value = w and V[w] is a certain non-
negative function of the possible values. It is assumed that V[w] =0 but
that V[w]>0 for w ^ w . This refined hypothesis states that for large T
there will be an exponentially small probability to observe any value w of
the time-average distinct from the ensemble-mean value w. In other words,
it states not only that the time-average will be equal to the ensemble-
average with high probability for large T, but it also gives a quantitative
estimate on the (very small) probability of deviations. The above statement
of the hypothesis is somewhat heuristic. A more precise formulation is that
the following limits should exist

for every w, with some function V having the properties stated above.
There are several considerations that motivate the above hypothesis

for Navier-Stokes turbulence. First, for a wide class of ergodic Markov



processes the above hypothesis has been proved as a rigorous theorem in
the so-called large-deviations theory of Donsker and Varadhan (e.g., see
ref. 26). The class of systems covered by this theory are random processes
or stochastic dynamics, governed for example by stochastic differential
equations (such as our Eq. (1)) . On the other hand, the hypothesis has
also been proved to be valid in deterministic dynamical systems which
are "hyperbolic," i.e. which are strongly chaotic: see refs. 27 and 28. It is
expected that the deterministic Navier-Stokes system has similar behavior
as the chaotic systems in those works, e.g. it will have a strange attractor
for which there is a finite density of positive Lyapunov exponents. It is
therefore reasonable to expect that the refined-ergodic, or large-deviations,
hypothesis shall be also valid for Navier-Stokes turbulence. We may note
that similar results hold in other areas of physics. For example, in equi-
librium statistical mechanics a similar large-deviations property holds for
volume-averages. The hypothesis there is known as "Boltzmann's principle"
and in that case the thermodynamic entropy function S plays the role of
— V above. For this reason the large-deviations theory in chaotic dynami-
cal systems by analogy often goes under the name of thermodynamic for-
malism. The large-deviations hypothesis for Navier-Stokes turbulence has,
in fact, been independently suggested before from such considerations by
Frisch (see Section 4.4 of ref. 25). It is a hypothesis, in any case, which is
subject to experimental verification, as discussed further below. We expect
it generally to be true.

The function V[w] which appears in the refined ergodic hypothesis
has been called by us the effective potential. This terminology is borrowed
from quantum field-theory (see refs. 10 and 11). In field-theory it is usually
introduced as the time-extensive limit of a so-called effective action, which
is a functional F on time-histories of the variable W. That is,
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in which F is the effective action and wT is the time-extended history

In probabilistic large-deviations theory V is usually called the rate function
or entropy function. For deterministic dynamical systems it is very simply
related to the Kolmogorov-Sinai or dynamical entropy (see refs. 27 and 28).
Mandelbrot(29) has proposed that it be called the Cramer function. We shall
employ here the terminology already in use in quantum field-theory. Note
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that the most important properties of V follow readily from the Eq. (8). As
shown in refs. 10 and 11, it satisfies

Of course, the condition of positivity is obvious, for a negative V would imply
probabilities >1. The condition of unique minimum might be violated if
there were "ergodicity-breaking" associated to multiple coexisting attractors
of the dynamics. This would be similar to the existence of multiple Gibbs
states and the occurrence of phase-transitions in equilibrium statistical
mechanics. However, while it might happen at some intermediate Reynolds
numbers subsequent to the first instability, it is very unlikely to occur in the
fully-developed turbulent regime at high Reynolds number. The last condition
of convexity arises from Holder realizability inequalities (see refs. 10 and 11).
Observe that Fhas units of l/(time) and that ( V ( w ) ) - 1 represents the averag-
ing-time necessary to reduce e-fold the probability of the fluctuation value w.

As discussed previously,(17) it is possible to measure the effective
potential for any variable W (which ought, properly, to be written with a
subscript as Vw to indicate the variable(s) considered). This requires only
having a long time-series W(t) of the variable in question, which could be
obtained either from experiment or from DNS. See ref. 17 for details. Note,
in particular, that such a measurement would empirically verify the refined
ergodic hypothesis. It would be very useful to determine the potentials of
interesting turbulence statistics both from experiment and simulation.
Although less traditional, the effective potentials are at least equally impor-
tant statistical characteristics of the turbulence as, say, Fourier spectra.
Also, as we discuss next, they are theoretically accessible within an impor-
tant class of closures.

2.2. PDF-Based Moment-Closures and the
Rayleigh-Ritz Method

Moment-closures may be described in general terms as follows: given
a dynamical system governed by differential equations x = K(x) one defines
a Liouville operator L as
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This operator governs the evolution of the PDF of the system via the
Liouville equation

In general, one may be interested in some finite set of moments of the PDF,

where y(x) = (y1(x),..., y s(x)) is a selected set of functions. Equations for
the moments follow directly from Eq. (14), as

where L+ = Ei, K i ( x ) d/dx, is the adjoint of the Liouville operator. The basic
difficulty is that for a nonlinear dynamics the average on the righthand side
of Eq. (16) is not a function of the given moments u ( t ) themselves, but also
involves additional higher-order moments. This is just the general closure
problem of nonequilibrium statistical dynamics. A standard procedure to
handle the difficulty in a pragmatic fashion is to make ad hoc "closures"
for the unknown terms involving the higher-moments, by which they are
represented in terms of the retained moments u ( t ) . In this way a closed
dynamical equation

is obtained for those moments which may then be solved by standard
numerical methods.

A somewhat more systematic approach to the problem is to make a
model for the actual statistical distribution P( •, t) at time t. In other words,
one may attempt to guess a functional form for P, based upon one's physi-
cal insight, past experience, or some empirical information. Often, rather
than an explicit PDF function, one will instead propose some surrogate
variables X with specified distributions which are supposed to model the
actual realizations of the system. In general, the model PDF's or surrogate
variables are selected so that they are fully determined once the moments
u( t ) are given (although in principle they may be determined as well by the
full set of moments { u ( t ' ) : t'< t} at all past times). In that case, a closed
moment equation is obtained as above with
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where < • > u denotes the average over the model PDF or surrogate
variables specified by the moment-values u. This is the method of
PDF-based moment closure, and it is essentially the idea used in refs. 12-16.
Observe that this method of moment-closure yields far more information
than simple modeling of the moment hierarchy equations. Now a solution
u*(t) of the moment equation Eq. (17) yields a plausible guess P*(x, t) =
p(x, u * ( t ) ) for the entire PDF. Therefore, predictions for any desired
statistical average may be obtained and not merely for the averages of the
original functions y. A variation of the PDF method as outlined above is
to parametrize the PDF or the distribution of the surrogates X by some set
of variables (5 other than the moments u themselves. These two formula-
tions are equivalent as long as p and u uniquely determine each other. An
infinite-dimensional version of this scheme is the mapping closure for
passive scalars [12], in which the amplitude mapping function X(00, t)
corresponds to B and the set of moment functions are just y n [ 0 ] =
[ T ( x ) ] n , n = 0, 1,2,..., or, equivalently, arbitrary functions y ( T ( x ) ) of the
scalar field 6(x) at a single space-point x.

As explained in ref. 11, it is possible to give the PDF closure a variational
formulation, analogous to the Rayleigh-Ritz characterization of wave-func-
tions in quantum theory. Let us consider here only the formulation for the
stationary state. In that case, the moment equations become just some non-
linear equations

whose roots u* are the predicted values for the moments in the statistical
stationary-state of the system. Now, an equivalent formulation as Eq. (19)
is the following: Let

where u = (u0, u) and

with a = (a0, a) and yo(x) = 1. In other words, yR is the PDF Ansatz itself
but with an arbitrary normalization factor u0. On the other hand, yL is an
arbitrary linear superposition of the moment functions y i ( x ) , including the
constant or zeroeth-order moment function y 0 (x)= 1. Now it is easy to
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check that the solutions of the moment equation Eq. ( 1 9 ) are characterized
equivalently as the stationary points (a * , u*) of the "Hamittonian"

under arbitrary variations of a, u such that a* = ( l , 0 ) . In fact, the sta-
tionarity equations under the variation of a are just Eq. (19) , while the
stationarity equations under the variation of u reduce to the conservation
of normalization condition

when a* = (1 ,0 ) . Observe that if the "Hamiltonian" .# [yR, yL] =
- \ d x y L ( x ) - L y R ( x ) were varied over all possible yR, yL, then one
would recover the exact equations

whose solutions are y R ( x ) = Ps,(x), the true stationary PDF, and
y L ( x ) = 1. The previous approximate solution of the Eqs. (24) is just an
example of the numerical "method of weighted residuals," which is well-
known to have a variational formulation for non-self-adjoint problems in
terms of the equation and its adjoint (see Chapter 9 of ref. 30).

The advantage of this variational formulation is that it yields also a
simple Rayleigh-Ritz method to approximate the effective potentials of the
system. In refs. 10 and 11 it was shown that the effective potential V= Vw

has the following variational characterization: V[w] is equal to the value of
the "Hamiltonian" Jf[yR, yL] = -<yL, LyR> at the stationary point,
when that is varied over all trial functions yR, yL subject to the constraints

and

Observe that (y L , yR> =f dx yL(x)* y R ( x ) and that W represents the
operator of multiplication by the variable W(x). Using the same Ansatze
for yR and yL as within the variational formulation of PDF closure
above, one obtains a simple algorithm to approximate V. It may be
described succinctly as follows (for further details, see refs. 11 and 31):
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The constraints in Eqs. (25)-(26) may be incorporated by suitable Lagrange
multipliers h and L, respectively. Define (S+ 1 )-dimensional vectors m =
uo(1, u) and also V(u, h) =u0( V0(u, h), V(u , h)) by

for ;' = 0, 1,..., S, where <.>u denotes average with respect to yR in
Eq. (20). Next, let

and

Then, within the Ansatz considered for yR, yL, Eqs. (20)-(21), it follows
that for each h, the following equations must be simultaneously solved:

Observe that u0 drops out of this system, and may be set to u0=1.
However, values a,,(h), m * (h) , L * (h) will be determined for the other
variables at each value of h. It is not hard to show that a solution will exist
to these equations at least for small |h|, whenever the stability matrix
J = (SV/dn)1- (u*) of the dynamical vector field V(u) is nonsingular at the
fixed point u* (see ref 31). In that case, the approximation to the effective
potential V is given as
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The second sum is taken with index i starting at i = 1, since the i = 0 term
vanishes identically. Of course, one really wishes to have V* as a function
of w. For that purpose, one must calculate

Inverting w * ( h ) to find the function h * ( w ) , one then obtains

This is the final Rayleigh-Ritz approximation to the effective potential
within a PDF Ansatz.

Let us now make several important observations concerning the
Rayleigh-Ritz approximation procedure for the effective potential V.
In principle, any fixed point u* of the closure dynamical vector V(u) may
be taken as the starting point of the calculation. Indeed, it is easy to
check that the Eqs. (30)-(32) are then satisfied at h = 0 by (a0 ,a , u, L) =
(1, 0, u*, 0). However the method should, in fact, only be applied if u* is
a stable fixed point of V ( u ) . The reason is that, as discussed in refs. 10 and
11, the quantity L * ( h ) should correspond to the principal eigenvalue of the
"perturbed" Liouville operator L + h • W, or, in other words, the eigenvalue
with the largest real part. For the full infinite-dimensional operator it is
known that this eigenvalue corresponds to the "zero-branch" L(0) = 0, i.e.
the branch which passes through 0 at h = 0. However, in the approximation
considered the zero-branch of eigenvalues only coincides with the branch of
principal eigenvalues if the fixed point u* is linearly stable. For that reason,
consistency requires that only stable fixed points of the closure equations
he considered. Next, we note that to calculate one point of the graph of
V*[w] vs. w requires to solve the coupled Eqs. (30)-(32) for precisely one
value of h( =h * [w] ) . This is a problem of determining fixed points of the
same type as that of finding fixed points of the original closure dynamics,
c.f. Eq. (19) . Indeed, given a fixed point u* of the closure equation, one
automatically has a joint fixed point of the Eqs. (30)-(32) for h = 0. There-
fore, it is not hard to track a succession of roots for some values of h in
the neighborhood of h = 0. Thus, the computational expense to calculate the
effective potential in the neighborhood of the predicted closure mean is of the
same order as to calculate the mean value itself. Lastly, we note that the
Rayleigh-Ritz calculation makes essential use of the actual dynamics,
through the Liouville operator. It further exercises the PDF Ansat:,
Eq. (20), as well, since it requires additional moments < Wayi>u not
appearing in the original closure equations. Thus, the Rayleigh-Ritz poten-
tial contains more information both from the microscopic dynamics and from
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the PDF Ansatz than is contained in the original closure equations them-
selves. Note that this is true even if the variable W corresponds to one of
the moment-functions yi, used in constructing the closure.

The Rayleigh-Ritz construction guarantees that the approximate
potential V*[w] enjoys many of the same properties as the true potential
V(w). It may be shown that

and that

where w * ( h ) is the function defined in Eq. (34). The latter equation is
analogous to the Hellmann-Feynman theorem in quantum-mechanical
perturbation theory, while the former states that V i ( w ) is the Legendre
transform of L*(h). (The proofs in ref. 11 do not apply to the Ansatz
Eqs. (20)-(21), but it may nonetheless be shown that these facts still hold:
see ref. 31.) It is a consequence that the property ( i i ) of the exact potential
holds also for the Rayleigh-Ritz potential:

Here w* = < W > u * is the average of W in the Ansatz at the fixed point
value u*. Thus, the closure mean is a zero and also a critical point of V*.
However, neither property (i), positivity, nor property (i i i) , convexity, are
guaranteed to hold for the Rayleigh-Ritz potential.

2.3. Practical Applications of the Theory

Using the above analytical results we may now justify the following
applied principles:

Realizability Criterion. A closure predicted mean value w* =
<W>u * for which the corresponding approximate potential V*.(w) does not
satisfy all realizability conditions (i)-(iii) must he rejected. In ref. 17 it was
shown that the Rayleigh-Ritz approximation converges to the true poten-
tial as the PDF Ansatz is successively improved. See also below. Further-
more, this convergence is (in all cases observed) from the mean value



outward. Thus, a failure of realizability in the neighborhood of the predicted
mean implies that convergence has not yet occurred even locally. In
particular, the mean value is not yet converged and its predicted value
cannot be trusted. Put another way, if the closure does not describe
correctly the small fluctuations of W near its predicted mean, then it is
unlikely to describe correctly the mean value itself. This is particularly
likely in strongly noisy systems such as turbulent flows, in which the fluc-
tuations make an important contribution to the means. Clearly, these
arguments are not rigorous, but only plausible. Below we shall check in
concrete examples the validity of the criterion.

Optimization Principle. If the PDF Ansatz contains a free param-
eter c then the optimum value of that parameter to predict the average w* =
< W > u * is the value c* for which the approximate potential V*(w; c) is
stationary under variations of c (if such a value exists). This principle can
be motivated on the basis of the variational characterization of the effective
potential, which expresses V[w] as the value of the "Hamiltonian" at a
stationary point under all variations with the constraint of fixed w. This
gives the principle an analytical basis, but there are also intuitive con-
siderations in favor of it. If a PDF Ansatz is "converged" for a particular
mean statistic (in the sense that the calculated mean changes only within
a specified tolerance under further refinement of the Ansatz), then the result
should not depend upon any arbitrary parameter in the model PDF. To
the extent that such dependence exists, it indicates a failure of the Ansatz
to be converged for that variable. It is thus reasonable to select as the
"best" value of the arbitrary parameter that at which the dependence is the
smallest. The optimization principle that is proposed thus corresponds to
a principle of minimal sensitivity(32) of the predicted mean to any free
parameters in the PDF Ansatz. However, there are important caveats:

First, for a given value of w there may be more than one stationary
point. The phenomenon occurs in practice within PDF closures, as dis-
cussed in Appendix II. This leaves some ambiguity as to which stationary
point to consider in making an approximation. It is shown in Appendix II
that, for any value of w obtained as the average < W>u* (c) for some value
of the free parameter c = c0, V*(w; c) is stationary under variations of c at
the point c = c0 itself. However, choosing this as the stationary point for
such w values would make the resulting approximate potential vanish at all
such points in w-space. This would lead to an approximate potential which
vanished at many points, violating the ergodic hypothesis. In addition to
this unphysical feature of the approximation, the "optimum" value of c
selected would then depend upon the point w considered. It is shown in
Appendix II that, in order to have one value c-c * be a stationary point
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of V*(w; c) for all w, it is necessary, in particular, that the average w(c) =
<W>u*(c) be stationary at the same value, i.e. c* must be a critical point
of w(c). This is a strong constraint on the c-values, which will generally
select only a few candidates for "optimum" values c*. It must then be seen
whether the potentials themselves are stationary as well.3 It cannot be said
in advance how successful such an optimization principle will be. We shall
examine below how well it succeeds in concrete closures for the 3-mode
system. Unlike the closely analogous Rayleigh-Ritz methods used in
quantum theory, the present principle does not yield bounds for the
approximated potential. This is a consequence of the non-self-adjoint-
ness of the evolution operator L for dissipative dynamics. In quantum
mechanics with self-adjoint Hamiltonian operator the corresponding
characterization of the potential is via a constrained minimization of the
expected energy value. Hence, the approximating potential is always an
upper bound and, furthermore, must approach the exact answer monotoni-
cally as more parameters are added to the trial Ansatz. In the present case,
adding parameters may even lead temporarily to a worse approximation.
It is only guaranteed to converge sufficiently closely when a large enough
number of parameters are added to the Ansatz.4

Neverthelesss, we believe that the methods proposed here are the
closest analogue conceivable to the Rayleigh-Ritz methods already exten-
sively utilized in quantum many-body theory and field-theory. We believe
that our similar approach will be very fruitful in turbulence and also in
other problems of nonequilibrium statistical dynamics with strong non-
linearity. It allows intuitive PDF Ansatze or guesses of the turbulence
statistics to be incorporated into analytical calculations, using the exact
equations of motion of the system. The variational method then yields
useful direct checks on the physical ideas motivating the PDF Ansatze
employed. Granted that no systematic derivation of closure approxima-
tions is possible, this seems to us a rational alternative.

3 In practice, however, it may be difficult to detect a non-stationarity of V*(w; c) at values w
far from the mean value w ( c * ) . Any critical point c* of w ( c ) will appear to be a stationary
point of V*(w; c) at values of w close enough to the minimum point w ( c * ) .

4 It may be of interest in this connection to note that the Donsker-Varadhan theory(26)

provides a mini/mix characterization of the effective potential, which sharpens the variational
formulation given above. In fact, if one makes the change of variables yL = u and yR = P/u,
with P a normalized PDF and with u>0, then it is proved(26) that

With this choice of variables the stationary point is seen to be always of saddle-type.
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3. FIRST EXAMPLE: HERMITE-EXPANSION PDF ANSATZ

Our first example of the variational method will be with a PDF Ansatz
based upon expansion in Hermite polynomials orthogonal on a trial
Gaussian weight. This representation of turbulence distributions was
apparently first suggested by Hopf and subsequently worked out in some
detail by Edwards.(33) It is very similar to representations of 1-particle
distributions used in the kinetic theory of gases, such as the Chapman-
Enskog solution of the Boltzmann equation. The analogous expansion of
Boltzmann solutions in terms of Hermite polynomials was already used in
the middle of this century by Grad.(34) These representations have one
defect, which is that the resulting distributions are not everywhere positive,
but become negative at some points. This failure of realizability for the
Hermite-expansion distributions need not be fatal, as the negative values in
the kinetic theory problem occur at extremely high velocities. Indeed, the
Navier-Stokes equations emerge from such unrealizable distributions in the
first-order Chapman-Enskog solutions of the Boltzmann equation, yet
Navier-Stokes equations are certainly very useful!

These problems may be expected to be more serious for turbulence,
since there is no scale-separation and the negative values of PDF's are
likely to occur much closer to the physically significant set of realizations.
Perhaps a more serious defect limiting the usefulness of systematic Hermite
expansions is the large number of degrees-of-freedom involved. The
number of Fourier modes that must be minimally retained for a developed
turbulent flow grows as ,N ~(Re)9/4, in terms of the Reynolds number Re.
However, the number of Hermite polynomials of degree D grows even
faster, ~ND! While the 3-mode dynamics we consider here is simple
enough that convergence can often be obtained, it is clearly unfeasible to
include many terms in a systematic Hermite polynomial expansion of
PDF's for Navier-Stokes turbulence. However, there may still be some
limited usefulness of low-order Hermite expansions in that case. It is shown
elsewhere(35) that second-order Reynolds-stress closures may be obtained
from cubic order Hermite-expansion PDF's in the case of homogeneous
turbulence.

In any case, we shall examine these Hermite-expansion PDF models
here as one example of the application of the variational methods. The
PDF Ansat: is as follows:
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where a = ( a 1 , a 2 , a 3 ) , n = (n1,, n2, n3), N = (N1, N2, N3),

and

with n! =n1! n2! n3! defining the factorial of the multi-index n. The single-
variable Hermite polynomials Hen(x; a) are defined for n = 0, 1, 2,... via

These polynomials have many properties, including orthogonality with
respect to the Gaussian weight, and are reviewed, e.g., in ref. 36, Chapter
22. To complete the closure, a specification of the moment-functions is also
required. It is most natural to take

in which case un= <yn >=Bn are the corresponding Hermite-polynomial
moments for the PDF-Ansatz Eq. (40). The resulting closure equations are
linear for this case:

with
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Observe that these equations are just a finite-order Hermite-Galerkin
truncation of the original linear Liouville equation and that LN,c =
(L(n; m)) is the matrix approximation of rank = (N1 + 1 )(N2 + 1 )(N3 + 1)
to the infinite-dimensional Liouville operator. In the variational derivation
of these equations we take yR = P in Eq. (40) above, and, likewise,

There is no need to augment these Ansatze by the addition of a constant
function, because the zeroeth-order moment is already contained as
He0(x; a) = 1. Note that N and c are free parameters of the closure and
may be chosen as desired.

(i) Thermal Equilibrium

We shall first consider an equilibrium version of the 3-mode system.
As discussed in Appendix 1, the system possesses an absolute-equilibrium,
Gaussian stationary distribution whenever ki, = Ovi, for all i= 1,2, 3 with
some fixed 0. The variance of the stationary distribution is then 0. As an
instance of this type, we consider the choice of system parameters Ki,• = 1,
vi,= 1, i= 1,2, 3. Since all of the modes are equivalent in this case, we take
all the Ansatz free parameters equal as well: Ni, = N, ci, = c, i= 1, 2, 3. We
study the resulting closures for various choices of N and a. For N up to 5,
we have found using MATLAB that the matrix LN,c has a unique zero
eigenvalue and that the rest of its spectrum lies in the left half of the com-
plex plane. Thus, the linear closure dynamics for the moments u. = (un) has
a unique, globally stable fixed point u* which determines an approxima-
tion p*(x; c, N) to the stationary measure. The statistics of main interest
are now the modal energies Ei,= 1/2x2

i, whose means are equal for all i= 1,
2, 3 (both in the Ansatz and in reality). In Fig. 1 we graph the predicted
mean energy E for N = 3 and for a range of a values. We see that a = 1 is
here a maximum point. Of course, we already know that a = 1 is the exact
value, since a2 = 0 and 0 = 1 in the case considered. This is interesting in
view of the optimization principle, according to which any potential
optimum value of a must correspond to a critical point of the closure
predicted mean value. This motivates us to calculate the effective potentials
VE(e) within the Hermite PDF Ansatz for N=3 and various values of a.
The results of such a computation are graphed together in Fig. 2. We
observe several striking features.
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Fig. 1. Mean energy vs. n in the equilibrium system with N = 3 Hermite expansion.

Fig. 2. Effective potential of energy in the equilibrium system with the Hermite expansion,
N=3, c= 1.0 to 1.5. a runs in steps of 0.05, moving right to left. The dark line indicates the
stationary curve c= 1.0.
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First, we see that realizability is violated for all c> 1.3, although the
predicted mean energy in the first such case, c= 1.35, is E = 0.48319554,
disagreeing with the exact result E = 0.5 by only 3.4%. This illustrates that
the realizability conditions on VE may be very sensitive tests of the con-
vergence of the closure predictions to the true values. We may test this
further by considering higher values of N. For all N> 4 the potentials VE

satisfy realizability in the same range of a considered above. It is a special
feature of the Hermite expansion closure for the equilibrium model that the
exact result for mean energy E = 0.5 is obtained for all a when N is even.
Thus, it is not very interesting to consider N = 4. However, when N = 5
we obtain realizability of the approximate VE for all 0.5 <c< 1.5. The
predicted mean energy for N = 5 is the worst when c=1.5, and we graph
the corresponding potential in Fig. 3. As noted, realizability is satisfied and,
indeed, the predicted mean is E = 0.49054354 for N = 5, a= 1.5, only off by
1.9%. Note, for comparison, that the predicted mean was E = 0.46579031
for the instance N =3, c= 1.5 in Fig. 2, in which case the prediction was
off by 6.8 % and realizability of VE was violated.

However, even more striking is the fact that a = 1 is a clear stationary
value for the potential V E ( e ) under variation of a. The potentials for c= 1
and c= 1.05 are essentially indistinguishable, whereas the change is much
larger in VE for other values of a under the same incremental change. The
stationarity at a = 1 is verified in further detail in the plot of Fig. 4, which

Fig. 3. Effective potential of energy in the equilibrium system with the Hermite expansion,
a =1.5, N = 5.



242 Eyink and Alexander

Fig. 4. Comparison of effective potentials under variation of c. The three groups of curves
correspond to c = 0.80, 1.00, 1.20 and also each +0.01. c=1.00 (heavy solid) is clearly a
stationary point.

graphs VE,.: at N=3 and for c = 0.8, 1, and 1.2, as well as nearby values of
each. Again, the potential is virtually unchanged at a = 1under the same
increment of a for which the potential changes noticeably near a = 0.8
or 1.2. Thus, we see here that the optimization principle selects the exact
value of a, and hence also the exact value of mean energy E = 0.5.

By taking larger N one should expect a convergence of calculated
effective potentials to the true ones. This is one of the advantages in prin-
ciple of a systematic approximation to PDF's such as Hermite expansions.
In Figs. 5 and 6 we plot together the Rayleigh-Ritz approximate potentials
VE from the Hermite expansions in the equilibrium 3-mode system for
a= 1 and N=3, 4, 5. The plots cover two ranges of E values, the first
Fig. 5 with a 10% variation from the mean value and the second Fig. 6
over a larger range with up to 200% variation. We see that in the first
interval, the effective potentials for all three N values agree very closely.
Hence, the Rayleigh-Ritz approximation here is already converged essen-
tially for N =3. In Fig. 7 the Hermite potentials are compared over this
range with those obtained from DNS of the equilibrium 3-mode system,
using the method discussed by us previously(17) The agreement is perfect.

In Fig. 6 we see that N = 4 and 5 potentials still agree over the larger
range of E, but significant departures are seen from the N=3 potential.
Although we do not include the figures, an examination over even a bigger
range shows that N = 4 and 5 potentials begin to disagree for E>2. This



Predictive Turbulence Modeling by Variational Closure 243

Fig. 5. Effective potential of energy in the equilibrium system with the Hermite expansion,
c = 1, N = 3, 4, 5, N=3 (solid), N = 4 (dotted), N = 5 (short dash). Over the range shown,
the curves are almost indistinguishable.

Fig. 6. Effective potential of energy in the equilibrium system with the Hermite expansion,
c=1 N=3, 4, 5, N= 3 (solid), N = 4 (dotted), N = 5 (short dash). Over the larger range,
only N = 4, 5 agree.
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Fig. 7. Effective potential of energy in the equilibrium system with Hermite expansion, a=1,
N = 5, and with DNS. DNS with errorbars.

example illustrates an important feature that convergence of the effective
potentials in the Rayleigh-Ritz approximation scheme is outward from the
minimum. Of course, this is also as one would expect, since it is more dif-
ficult for a PDF Ansatz to accurately capture larger fluctuations away from
the mean value. However, it is an important consideration in justifying the
realizability criterion. If a closure gives an accurate result for the mean of
a certain variable, then it should also give a reasonable approximation for
fluctuations at least sufficiently close to the mean. For this reason, failure
of the effective potential realizability conditions close to the mean imply
that the mean value very probably is not converged either. Any agreement
with the true mean value must then be a shear accident, and very unlikely
in general.

(ii) Dissipative Cascade States

We now turn to the study of cascade states, not in thermal equi-
librium. These occur for generic choices of parameter values of the system,
other than those satisfying the fluctuation-dissipation relation. Just to be
specific, our standard choice in this work is: A1 =2, A2 = A3 = — 1, k1, = 1,
K2 — K3 — 0.001, v1, = 0.001, v2 = v 3 = 1 . As discussed in Appendix 1, the
mode-1 then represents a "large-scale" unstable mode which is strongly
forced, while modes-2 and 3 represent "small-scale" stable modes which are
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strongly damped. An irreversible energy cascade is set up from mode-1 into
modes-2 and 3. For each mode of the system a "modal Reynolds number"
may be introduced, as:

with Xi, = y/<x2
i >the rms fluctuation of mode-i. These numbers measure

the relative strength of the nonlinear "inertial" terms and the linear
damping terms in the dynamics of mode i. It is found from DNS that
X1 = 2.11, X"2 = X"3=0.70 for the above parameter values, so that
R e 1 = 4 x l 0 3 and Re2 = Re3=0.7. Thus, the evolution of mode-1 is
dominated by the nonlinear dynamics, while the nonlinear and damping
terms play an equally important role in the evolution of modes-2 and 3.
The most interesting statistics are the modal energies E1 =1/2<.x2

1>,
E2 = 1/2<,x2

2>, and the triple correlation T= <x 1 x 2 x 3 ) . It is found from
DNS that

Notice that the last two values are inferred to the stated high accuracy
from the measured value of E1 and the exact equations

They have also been verified to three digits directly from the DNS. We are
interested in predicting these three mean statistics within the Hermite-
expansion PDF closures.

Again using MATLAB, we found the matrix approximations LN,c all
have a simple eigenvalue 0 and the rest of the spectrum in the left halfplane.
Thus, there is a unique fixed point within the Hermite-expansion Ansatz for
all a and N< 5. The mean values of E1, E2 and T for N = 3 and for values
of a from 5 to 100 are graphed versus a in Figs. 8-10. In each case, the
most noticeable feature is the plateau of values occurring as a-> oo. With
superscripts (N, a) indicating the values of the means for those parameters
in the Hermite expansion, we find
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Fig. 8. Mean of E1, vs. c in the N = 3 Hermite expansion tor the nonequilibrium system.

These plateau values are of the greatest interest since they are candidates
for optimum values, if the corresponding potentials are stationary (approach
a limit) as a -> oo. This has been verified to occur, in the somewhat surprising
sense that the potentials of all three variables are negative and concave
at every value of a and approach the identically zero potential V=0

Fig. 9. Mean of E2 vs. c in the N= 3 Hermite expansion tor the nonequilibrium system.
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Fig. 10. Mean of T vs. c in the N = 3 Hermite expansion for the nonequilibrium system.

Fig. 11. Approach of effective potential of E2 to zero for increasing c. c = 3 (solid), c = 4
(dotted), c = 5 (short dash), c = 6 (long dash).
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pointwise as a -» 0. This is illustrated in Fig. 11 for E2, but similar behavior
is found as well for E1 and T. This may be understood in the following
way: for all values of a the N = 3 Hermite-expansion Ansatz underestimates
E1 and T and overestimates E2. The values closest to DNS are indeed
obtained in the limit a -» oo, as the optimization principle predicts. It may
be a little disturbing that realizability is still violated for VE2 and VT at
every finite value of a, although the predictions are off by as little as 0.17 %
from the DNS values! This indicates perhaps an oversensitivity of the effec-
tive potential realizability conditions here to departure from convergence.
This is, however, the only example we have found so far in which the
potentials exhibit such strong sensitivity. Furthermore, it is appropriate to
point out that realizability is (marginally) recovered at the optimum point
c=OO, since the potential is then V = 0. This potential is indeed non-
negative and convex, although in a degenerate way. Hence, the realizability
criterion would here also lead one to select correctly a = oo as the best
value.

We have studied as well some higher values of N, but the situation
does not change qualitatively up to N = 5. The plateau values of the means
are now

The potentials are still all negative and concave, approaching the identi-
cally-zero potential pointwise as c-> oo. Hence, the above plateau values
are again selected (correctly) as optimum values. The only difference from
the N = 3 case is that the optimum predicted values are in better agreement
with DNS for N = 5, just as one should expect. Although the Hermite-
expansion method is not very successful up to N=5, the realizability
criterion and the optimization principle both correctly indicate how the
best results may be obtained within that Ansatz for the nonequilibrium
system.

It would be of interest to study even larger N, to test for ultimate
convergence. However, using the direct-method eigenvalue routines in
MATLAB, we were unable to consider N>5 (corresponding to matrices of
rank 343 or higher). Because the matrix in Eq. (46) is very sparse, iterative
methods should allow one to go to higher values of N. We attempted to
use the iterative Arnoldi method, which calculates selected eigenvalues and
eigenvectors within Krylov subspaces (see ref. 37). This is particularly
suited to finding eigenvalues of large, sparse, nonsymmetric matrices at the



extreme points of their spectra and also the associated eigenvectors. The
computer time and memory requirements grow linearly with the rank of
the matrix, here R = ( N + 1 ) 3 , when the matrix has a sparse structure.
The public-domain software ARPACK(38) contains Fortran programs to
execute the Arnoldi algorithm. We used the ARPACK driver program
dndrvl . f , a double-precision code for nonsymmetric matrices, to search for
the principal eigenvalue L.N,C(h) of the matrices in Appendix III.l , from
which the effective potential could be constructed. In test runs for the equi-
librium system, convergence was rapidly obtained using the ARPACK
code for values of N up to 20. However, in the nonequilibrium system, we
failed to get convergence for any value of N considered, even N=1. The
reason seemed to be a failure to input a sufficiently good initial guess for
the "right trial state," or stationary PDF. We tried both a simple Gaussian
initial guess (all Hermite expansion coefficients Bn = 0 except Bo= 1) and
also random choices of the Bn. In all cases, the specified maximum number
of iterations (20,000) was exceeded. This failure underscores the inade-
quacy of systematic Hermite expansions of PDF's in high Reynolds num-
ber turbulence applications. Even for this three mode system, expanding
around a Gaussian Ansatz in orthogonal Hermite polynomials is a very
poor way to represent the PDF far from absolute thermal equilibrium.

(iii) Near-Equilibrium Cascade

Our interest, of course, is not in the Hermite-expansions themselves,
but rather in using them to investigate the utility of the variational method
for a dissipative, non-equilibrium system. In principle, it should be possible
to devise better initial guesses for the Arnoldi iteration, using the more
successful PDF Ansatze from the following sections. However, it was easier
simply to change the parameter values to be nearer to absolute equilibrium.
Therefore, in this section only we consider the choice of parameters'. A1=2,
A2 = A3= -1, k1, = 1.05, k2 = k3=1.00, V1 = 1.00, v2 = v3= 1.05. This is still
an irreversible cascade-state, but with statistics much closer to Gaussian.
From DNS, the mean values are found to be:
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The small magnitude of the triple moment is a quantitative measure of the
nearness to Gaussianity. In this near-equilibrium case, the modal Reynolds
numbers are all of order unity: Re1 = 2.02 and Re2 = Re3 = 0.937.
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As for the equilibrium case, we obtained convergence of the Hermite
expansions using the ARPACK code for N up to 20 and for a wide range
of a values in the near-equilibrium cascade. In fact, 8-decimal accuracy was
obtained already at N= 12 for a near to 1, based upon comparison with
the values for the next N. The results for the mean values so obtained were

As may be seen, the agreement with the DNS for the means is well within
numerical error. In Figs. 12-14 are plotted also the effective potentials of
E1, E2 and T calculated from the Hermite expansion for N= 6 (accurate to
3 decimals), along with the potentials obtained from DNS. Again, excellent
agreement is obtained.

Even more interesting are the results of applying the optimization
principle. For all N and a studied, the Rayleigh-Ritz potentials satisfied the
realizability constraints. Furthermore, in the range of a considered, 0.7-1.1,
the mean values exhibited stationary points as functions of a, clear
candidates for "optimum values." In Fig. 15 we plot the mean energy E1 as
a function of a for N from 4 to 7, and, again, in Fig. 16 for N from 6 to 12.
Similiar plots are obtained for E2 and T. The rather strong dependence of

Fig. 12. Effective potential of E1, in the near-equilibrium system with Hermite expansion,
N=6, c = 0.85 and with DNS. DNS with error bars.
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Fig. 13. Effective potential of E2 in the near-equilibrium system with Hermite expansion,
N = 6, c = 0.85 and with DNS. DNS with error bars.

Fig. 14. Effective potential of T in the near-equilibrium system with Hermite expansion,
N=6, c = 0.85 and with DNS. DNS with error bars.
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Fig. 15. Mean of E1, vs. c in the Hermite expansion for the near-equilibrium system, N = 4-7.
N = 4 (solid), N = 5 (dotted), N = 6 (short dash), N = 7 (long dash).

Fig. 16. Mean of Et vs. a in the Hermite expansion for the near-equilibrium system,
N=6-12. N = 6 (solid), N = 7 (dotted), N = 8 (short dash), N = 9 (long dash), N= 10 (light
dash), N=11 (squares), N=12 (circles).
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the optimum values < c * ( N ) on the Hermite degree N is a little surprising,
although the dependence is less for larger N. In any case, it is already clear
from Figs. 15 and 16 that the candidate "optimum values" of energy-1 at
each TV, or E * 1 ( N ) , are closer to the final exact result than on the average;
i.e. for typical fixed a values independent of N.

This observation is borne out numerically. The optimum values c * ( N )
were obtained at each N by the criterion that the local variation of the
mean E1 with respect to a at that value be a minimum (if not zero) over
the range considered. That is, the means were selected to have "minimal
sensitivity" to the free parameter. These were compared with the predicted
mean for one value of a in the interval, fixed independent of N. We chose
the equilibrium value of a = 1 for this comparison, although other choices
lead to similiar results. In the following Table 1 we give the results for the
"optimum values" of energy at each N, or E 1 * ( N ) , along with the corre-
sponding results for <c= 1, denoted simply E 1 (N) . It has been checked that
the "optimal values" of a make the potential functions VE1 nearly station-
ary to small variations of a. Entirely similiar results are obtained also for
E2 = E3 and T, which are therefore not shown.

It may easily be seen that the convergence is faster for the optimum
values than it is for the fixed-sigma (a= 1) values. This can be made more
precise by considering the relative error

for each case, as displayed in Table 2. The relative error at a = 1 for
increasing TV decreases roughly exponentially, i.e. A 1 ( N ) ~ K - N , with
K=2.7-2.1. Interestingly, the convergence rate for the optimal values is less
regular and not even monotonic. However, the relative errors of the
optimal values are always smaller than those for fixed c= 1, by a factor of

Table 1. Comparison of c = 1 Values with Optimum Values

E 1 (4) = 0.509801 1 7
E1,(5) = 0.50945790
E1(6) = 0.50958394
E1(7)=0.50953943
E1(8) = 0.50955776
E1(9) = 0.50954997

E1(10)=0.50955345
E 1 ( 1 1 ) =0.50955 188
E1(12) =0.50955262

E1*( 4) = 0.5095461 7
E1*(5 ) = 0.50951379
E 1 * ( 6 ) = 0.50955085
E1*(7) = 0.50955870
£1*( 8) = 0.50955201
£1*( 9) = 0.50955242

E1*( 10) = 0.50955236
E1*(11) = 0.50955237
E1*( 12) = 0.50955238
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about 30 on the average. This is a clear success of the optimization prin-
ciple. Note that a reduction of error by a factor of 30 at fixed a = 1 would
require going to a value of N higher by 3 or 4. Since the computational
cost increases proportional to ~ N3, it cheaper even for low values of N to
search over a range of a for an "optimum value" at fixed N. The same
increase in accuracy is then obtained at considerably lower computational
cost. This comparison would be even more dramatic for a system with
many degrees of freedom D, since the cost of computation would then grow
as -.ND.

We may summarize, finally, the results of this section. As expected,
the representation of PDF's by Hermite polynomial expansions about
Gaussian weights has very limited usefulness far from thermal equilibrium.
However, the variational methods we have investigated make the best use
of the poor choice of Ansatz. The realizability conditions on the effective
potentials identify a priori the range of free parameters in which qualita-
tively correct predictions should lie. The optimization principle then
pinpoints the best values of the parameters within that range (if any) at
which the predictions are minimally sensitive to the change of free
parameters. In the examples of this section, these criteria have led in each
case to substantially improved quantitative predictions.

4. SECOND EXAMPLE: CHI-SQUARE PDF ANSATZ AND
QUASINORMAL CLOSURE

In general, we do not expect it will be practical to look for con-
vergence in far from equilibrium systems using systematic approximations,
such as Hermite expansions. This is already true even for simple systems
such as the 3-mode dynamics and even more likely in many degree-of-
freedom systems such as Navier-Stokes dynamics. However, the Rayleigh-
Ritz approximation of the potentials should still accurately reproduce the
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Table 2. Comparison of Relative Errors for c=1 and
Optimum a*(N)

A1(4) = 4.9x I0 - 4

A1(5)= 1.8x 10-4
A1(6) = 6.2x I 0 - 5

A 1 (7) = 2.5x 10-5

A1(8)=11 x 10-5

A1(9) = 4.7x 10-6

A 1 (10 ) = 2.1 x 10-6

A1(11) = 1.0x 10-6

A1*(4)= 1.2x 10-5

A1*(5) = 7.6x 10-5

A1*(6) = 3.0x 10 - 6

A1*(7)=1.2x10-5

A1*(8) = 7.3x 10-7

A1*(9) = 7.8x 10-8

A1*(10) = 3.9x 10 -8

A1,*(11) = 2.0x 10-8
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exact ones, when calculated in conjunction with physically well-chosen
PDF Ansatze. The best such models will not, in our opinion, be based
upon rote analytical approximations of PDF's, but shall require a fair
amount of insight into the dynamics and statistics of the system considered.
It is crucial to test whether the effective potentials can be successfully
calculated—for selected random variables—using such physically-motivated,
but relatively crude, PDF Ansatze. If our ideas on using the effective poten-
tials for practical turbulence modeling are correct, then the same closures
able to calculate successfully the mean values must also be able to
reproduce fairly well the fluctuations around the mean. Otherwise, there
would be little practical interest to monitor the performance of the closures
in describing the fluctuations.

We have therefore attempted to calculate effective potentials of the
nonequilibrium 3-mode system by adopting appropriate statistical "sur-
rogate" variables for the three modal variables. The closure we first con-
sidered is borrowed from an unpublished work of Bayly.(39) It can be
regarded as a simple type of mapping closure, with the realizations of the
3-modes represented by a quadratic map X = Q[N, N'] of 6 independent,
identically distributed normal random variables N = (N1, N2, N3), N'=
( N 1 , N'2, N'3), each of zero mean and standard deviation 1. More precisely,
the so-called chi-square Ansatz is specified as

with i, j, k a cyclic permutation of 1, 2, 3. This Ansatz contains 4 closure
parameters B = (B1 ,B2, B3, B4)• The terminology "chi-square" arises from
mathematical statistics, where the product of two Gaussian random
variables is called a x2 random variable. Such variables have strongly non-
Gaussian PDF's, with exponential tails. Hence, the quadratic terms
proportional to B4 are responsible in this Ansatz for the non-Gaussian
effects, such as energy transfer. To determine the 4 closure parameters a
corresponding set of 4 moment-functions y = (y1, y2 y3. y4) are required.
These are taken to be

for i = 1, 2, 3 and

The associated moments u = < y > are easily calculated within the previous
Ansatz Eq. (66):
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for i = 1,2, 3 and

These moments are directly related to the modal energies Ei, =1/2ui,
i= 1, 2, 3 and the triple correlation T = u4. There are no free parameters in
the x2 Ansatz.

The resulting closure equations are easily derived as

for i = 1,2,3 and

These are just the quasinormal closure equations of Proudman and Reid(40)

written for the 3-mode model, which are obtained by the neglect of
4th-order cumulants in the equation for the 3rd-order moment. The x2

PDF Ansatz actually gives non-vanishing cumulant parts to the 4th-order
correlations appearing in the equation for u4, namely (X 2 i X 2 j > = uiuj +
2u44/3 for i=j. However, the 4th-order cumulant terms drop out of the
equation for u4 as a result of the conservation condition A1+ A2 + A3 = 0.
The quasinormal (QN) equations have some special interest since they
were historically the first example to yield a violation of realizability of
2nd-order moments. The possibility of negative energy spectra was observed
by Kraichnan(4,5) and negative values were in fact obtained in some
wavenumber ranges by Ogura(41,42) in a numerical solution of the QN
equations for 2D and 3D Navier-Stokes. This example led Kraichnan to
raise the general issue of realizability in turbulence modeling.(4,5)

In his 1963 paper on the 3-mode model(20) Kraichnan observed, on the
other hand, that the QN equations for that system seem to be realizable
and lead there to positive modal energies. There are actually two fixed
points of the QN equations for the 3-mode model, one with all positive
energies but another with some negative energies. The fixed points energies
are obtained from

for i = 1, 2, 3 with u4 determined as one of the two roots of the quadratic
equation
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for

The fixed point with some energies negative is found to be unstable,
while the fixed point with all positive energies is stable. The stable fixed
point with positive energies thus satisfies all of the standard realizability
conditions and it is of particular interest to see how it fares under our new
realizability criterion. For our standard nonequilibrium choice of param-
eters we find at the stable QN fixed point the values

These may be compared with the DNS values

We see that the 2nd, 3rd, and 4th moments are well-predicted by the QN
closure, but the 1 st moment is badly underpredicted. Examination of the
Eq. (73) for i= 1 shows that the reason for this poor prediction is the near
cancellation between the two terms in the numerator, which implies that a
very accurate value for u4 is required to obtain an adequate value for u1.

An interesting point is that the fixed point considered, while stable and
giving positive energies, is actually not realizable within the x2-Ansatz,
A simple calculation shows that the above fixed point values require B2

2 =
P2

3= -0.129080307, which leads to a pure imaginary value of B2 = B3! On
the other hand, the fixed-point value of B1 is obtained from B2

1 = 0.8694197
and is thus real. Although the x2 PDF is not realizable for the fixed point
values, the closure actually does a quite adequate job of predicting u2 = u3

and u4. From the fact that the fixed point Bi, value is imaginary for i = 2, 3
and real for i = 1, one might be misled into believing that the predictions
are good for u1, and poor for u2 = u3. However, the opposite is the case.
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Fig. 17. Effective potential of E1, in the nonequilibrium system with the chi-square ansatz
curve is negative and concave, violating realizability.

We now consider the approximate effective potentials of the variables
E i ( x ) = 1/2x2

i and T(X) = x1x2x3 within the x2-closure. The dynamical vector
fields of the closure used in the Rayleigh-Ritz calculation are recorded in
Appendix III.2. The results are graphed in Figs. 17-19. We see that the
effective potentials VT and VE2 = VE3 satisfy all the realizability conditions.
However, the effective potential VE1 is negative and concave, violating
realizability. Thus, based upon our realizability criterion, we would be
led a priori to reject the QN prediction for E1 but, at least tentatively, to
accept the predictions for E2 = E3 and T. Hence, the realizability criterion
based upon the approximate effective potentials is successful here. As we
have already observed, the classical realizability conditions on energies are
all satisfied in this case and do not detect the poor prediction of E1.
Furthermore, while the realizability of the full PDF for the x2 Ansatz cer-
tainly fails, the source of failure actually tends to mislead regarding which
predictions are good and which poor. By contrast, the effective potential
here has accurately pinpointed the good predictions for E2 = E3 and T and
the bad one for E1. It is interesting to decompose the x2 approximate effec-
tive potential V E 1 (e) into 4 terms corresponding to each of the 4 moment-
functions of the closure:
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where

for i=1, 2, 3, 4, and the various expressions therein are given in
Appendix III( i i ) . We have checked that the separate terms are all positive
and convex except the i = 4 term, which is the dominant contribution and
leads to the overall realizability-violating potential. It is the role played
by transfer in the x2 Ansatz which is leading to the nonrealizable potential
for E1.

For the two variables whose effective potentials satisfy realizability in
the x2 Ansatz it is interesting to compare with the potentials obtained from
DNS. The results from DNS are graphed along with the x2 predictions
from Rayleigh-Ritz in Figs. 18 and 19 for VE2 and VT. It is seen that the
results are qualitatively in agreement. In fact, quantitatively the x2 results
agree with those from DNS to about 30% over a range of variation of
about 20% from the mean value. This is a very satisfactory agreement,
given the crudity of the closure. It is significant that such a reasonable
agreement is obtained in the Rayleigh-Ritz calculation, despite the
breakdown of realizability of the PDF Ansatz itself. This indicates that the
effective potentials are more robust measures of correctness of predictions
than the PDF. These results are an important test of our ideas on practical

Fig. 18. Effective potential of E2-,_ in the nonequilibrium system with the chi-square ansatz
and with DNS. DNS with error bars.
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Fig. 19. Effective potential of T in the nonequilibrium system with the chi-square ansatz and
with DNS. DNS with error bars.

modeling. The utility of the realizability criterion on effective potentials
depends upon the thesis that an Ansatz adequate to calculate a mean-value
should also yield a reasonable result for the fluctuations, as codified
in the effective potentials. The inverse statement then must hold as well:
a qualitatively poor prediction for the fluctuations should imply also a
poor prediction for the mean.

We briefly discuss some other results for the x2 PDF closure:
As pointed out earlier, it is not really meaningful to employ the

Rayleigh-Ritz approximation of potentials at an unstable fixed point.
Nevertheless, out of academic interest we have done so at the unstable
fixed point in the x2-closure and we report the results briefly here.
The moments at this second unstable fixed point are ,u1

(,unst)= 1002.001999,
u2

(unst)=u3
(unst)= -000000995, u4

(unst) = 0.0010009995. The predicted
energies of modes-2 and 3 are negative at this fixed point, violating 2nd-
moment realizability. It is amusing to note, however, that the Rayleigh-
Ritz potentials of VE2 = VE3 are positive and convex, satisfying realizability!
On the other hand, the potential VT is realizability-violating: see Fig. 20.
Thus, even if one (incorrectly) ignored the instability of the second fixed
point and its failure of 2nd-moment realizability, the effective potential for
VT calculated by Rayleigh-Ritz would reveal a problem.

Although we have focused in this section on the nonequilibrium
cascade states, the x2-closure can also be applied to the equilibrium system.
In Fig. 21 we plot the effective potential VE1 for the equilibrium case
calculated by Rayleigh-Ritz in the x2 Ansatz, versus the result for the
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Fig. 20. Effective potential of T with the unstable fixed point of the chi-square closure. Curve
is negative and concave, violating realizability.

Fig. 21. Effective potential of energy in the equilibrium system with the chi-square ansatz
and with Hermite, c= 1, N = 3. Chi-square (squares), Hermite (solid line).



Hermite-expansion, N = 3, o — 1 , which is essentially exact in the range
considered. As one can see, the two are indistinguishable over an interval
in which the energy varies up to 10% from the mean value. This is a
remarkable success of the x2-closure, considering that there are 64
parameters in the N — 3 Hermite-expansion PDF and only 5 (counting u0)
in the x2 Ansatz Hence, this closure works very well for the equilibrium
system and, in the nonequilibrium case, gives good predictions of T and
E2 = E3. The chief failing of the x2-Ansatz is really only in its miscalcula-
tion of the mode-1 energy in the nonequilibrium cascade system.

5. THIRD EXAMPLE: TWISTED-GAUSSIAN PDF ANSATZ

We have not yet developed in this paper any PDF Ansatz which is
adequate to calculate all of the relevant statistics of the nonequilibrium
cascade states for the 3-mode system. In general, one hopes that it will be
possible to make Ansatze adequate to describe some low-order statistics of
interest, by combining data from experiments and simulation, physical
insights, and basic mathematical constraints. Thus, it is of interest here to
test that idea, by trying to develop a model PDF which can better calculate
the mean energy E1 (the main failure of the x2 Ansatz), along with the
other mean statistics. If so, then it is important to examine whether
realizability will hold for the corresponding potential VE1. If realizability
holds, then it is furthermore interesting to see how quantitatively accurate
is that approximate potential. To develop an improved model PDF for this
purpose, one might try to add parameters systematically to the x2 Ansatz,
e.g. by adding higher-order terms than quadratic in the mapping func-
tion Q. However, we have instead considered a fundamentally different
PDF model.

Recall that in the x2 Ansatz the fixed point was not realizable, with
parameters B1 becoming pure imaginary for i = 2, 3 and only B1 remaining
real. It is apparent from that result that only the 1-mode has a large
Gaussian component and that the 2 and 3-modes are essentially non-
Gaussian. Further insight into the character of their statistics is provided
by DNS study of the system. In work of Bayly and Sochos,(43) scatterplots
of the stationary PDF P,(X) of the 3-mode system were obtained from
DNS. We have reproduced this work, with results illustrated in Fig. 22.
The plots show that, with high probability, either x2= x3 or x2= — x3 in
every realization. We therefore have adopted a model which incorporates
these observations and, as well, has the required statistical symmetries
(discussed in Appendix 1). This twisted-Gaussian (TG) model represents the
realizations of the 3-mode system by
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where N1 ,N 2 , N3 are as before independent standard normal random
variables, the Heaviside theta functions T+ are defined by

and B is a Bernoulli random variable; i.e. B = 1 with probability p and
B = 0 with probability q = 1 — p. Thus, the variable X1 is represented
entirely by a Gaussian. Furthermore, in this model, for X1 > 0, X2 = X3 =
B2N2 with probability p and X2= — X3 = B 3 N 3 with probability q, while
for X1<0, X 2 = - X 3 = B 2 N 2 with probability p and X2 = X 3 =-B 3 N 3

with probability q. This Ansatz is faithful to the main features observed
in the scatterplots and has all the required statistical symmetries. Unlike
the x2 Ansatz (which includes the Gaussian PDF as a special case when
B4 = 0), this closure would not work well for the equilibrium system and is
tailored fundamentally to the nonequilibrium cascade states.

The TG-Ansatz contains three closure parameters B = ( B 1 , B 2 , B 3 ) as
well as one free parameter p. To fix the closure parameters three test func-
tions y = (y1, y 2 , y 3 ) are required. We have chosen

from which one easily calculates the corresponding moments u = < y > as

Note that <X2
2> = < X2

3> in this Ansatz, just as for the exact stationary dis-
tribution when v2 = v3 and K2 = K3. Thus, it is not necessary to add x\ as
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a test function because of the exact statistical permutation symmetry of the
2 and 3-modes. Note also that a negative triple moment is obtained in
the Ansatz when the "correlated bar" of the "cross" in the X2 — X3 -plane is
the longest and heaviest for X1 < 0 and the "anticorrelated bar" is the
longest and heaviest for X1 > 0. This is the "twist," which reproduces rather
well the features seen in the scatterplot of Fig. 22.

Fig. 22. Scatterplot of PDF in the nonequilibrium system. Shown are cuts in the (x2 , x3)-
plane at constant x1, = -5 (a) ,x 1 , = -3 (b), x1, = -1 (c), x1, = 1 (d), x1, = 3 (e), x1, =5 ( f ) .
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The resulting closure equations for the moments u are easily obtained,
as

The absolute value signs |.| appearing on some u1, factors would be
unnecessary if realizability of fixed points were guaranteed, so that the
2nd-moment u1 must be positive. The absolute values have been added
here (somewhat arbitrarily) to all factors originating from a u1 to
prevent imaginary values from appearing in the equations. (Without the
absolute value signs an unstable fixed point with Re(u1 ,)<0 in fact
appears.) We see that the only difference from the QN equations is in the
modeling of the moment

which has, in addition to the term oc <X2
2><X2

3> =u2
2, also a nontrivial

cumulant part. The resulting closure equations thus contain a nonvanishing
contribution from 4th-order cumulants.

In the steady-state, the first two equations may be used to eliminate u2

and u3 in the final equation in terms of u1 alone. There are two fixed points
determined from this equation. For p = 0.5, the values are

at fixed point /, and

at fixed point //. Numerical spectral analysis of the Jacobian matrices
at these fixed points shows that / is stable and // is unstable. Fixed
point / is also the only one to satisfy standard 2nd-moment realizability, as
u2 is negative for fixed point //. (Note, however, that the violation of
2nd-moment realizability is, in some sense, slight at fixed point //, as the
value of ,u2 is quite close to 0.) In general for arbitrary values of p we find
that the fixed points / and // exist with similar properties.
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Because the fixed point / is stable and satisfies 2nd-moment realiza-
bility, it is the obvious candidate for the physical fixed point. Furthermore,
it may easily be checked from Eqs. (93)-(95) that the parameters Bi,i= 1,
2, 3 are real-valued at fixed point / for all p, and therefore PDF
realizability is satisfied as well. Fixed point / of the TG-closure is the only
one which we shall consider here. In Figs. 23-25 we plot the predictions for
E1, E2, and T as a function of the free parameter p. We see that, although
E2 and T are only weakly dependent on p, the mean energy E1, in mode-1
is much more strongly dependent on p. As p approaches either of its
limiting values 0 or 1, all three rise or fall rapidly.

The minimum value of E1,= 1.25 occurs at p = 0.896. This minimum is
too shallow to be seen clearly on the original scale, but is shown on the
inset graph of Fig. 23. Hence, the point p*=0.896 is a candidate for an
"optimum" value of the free parameter p. However, we may note in
advance that the mean energy E1, at this point is considerably under-
predicted, 45 % smaller than the DNS value E1,= 2.28. On the other hand,
the predicted value of E1, in the TG-closure for p = p*, is still better than
the QN prediction of E1, = 0.75. In Fig. 26 we plot the potential of VE1 in
the TG-closure for p = p* and for nearby values of p. Clearly, it satisfies
realizability and so also do the TG predictions for VE2 and VT (not
shown). In fact, the same qualitative features are observed for VE1, VE2 and
VT at all p-values in the TG-closure (see below). The Fig. 26 demonstrates

Fig. 23. Mean of E1, vs. p in the twisted-Gaussian ansatz for the nonequilibrium system. The
inset zooms into the neighborhood of the minimum at =0.896.



Predictive Turbulence Modeling by Variational Closure 267

Fig. 24. Mean of E2 vs. p in the twisted-Gaussian ansatz for the nonequilibrium system.

as well that VE1 is nearly stationary to variations of p at the point p = p*,,
at least in the interval of E1, shown near the minimum. Hence, it should be
taken as the "optimum value" of p according to the optimization principle.
However, the prediction for E1 at the parameter value p = p* is the worst
underprediction over the whole range of p values! This illustrates vividly the

Fig. 25 . Mean of T vs. p in the twisted-Gaussian ansatz for the nonequilibrium system.
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Fig. 26. Comparison of effective potentials under variation of p. first group p = 0.896 (short
dash), p = 0.897 (long dash); second group p = 0.91 (light dash), p = 0.909 (heavy solid); third
group p = 0.890 (light solid), p = 0.891 (dotted) p = 0.896 is clearly a stationary point.

important dictum that realizability cannot guarantee closeness to the true
answer, as here the departure is up to 45 % from DNS yet all realizability
conditions are satisfied. However, the satisfaction of realizability is consis-
tent with the qualitative correctness of the TG-closure, which is in line with
its observed improvement over the x2-closure. A more serious limitation
may be revealed in the optimization principle in this example. In defense of
the principle it may be pointed out that much worse predictions are
obtained in the TG-closure for p = p * , e.g. near the endpoints p = 0 or
p = 1. On the other hand, the predictions at p = p* „, are far from the best
possible.

In fact, it is possible to make an a posteriori adjustment of the param-
eter p so that the mean values E1, E2 and T are exactly postdicted. There
are found to be two distinct values, p_=0 .280 or p+=0.975, which
reproduce the DNS values of all three means precisely. As we show in
Figs. 27-29 the results at those two values for the potentials VT are nearly
indistinguishable, the corresponding VE2 are also fairly close, but the
calculated VE1 are quite distinct. The smaller value p = p _ reproduces
better the features of the PDF seen in the scatterplots, so that we adopt it
here. In Figs. 30-32 we compare the three potentials VE1, VE2 and VT

obtained from TG for p = p_ with those obtained from DNS. As may be
seen, agreement is remarkably good over a range of values differing as
much as 20% from the mean.



Predictive Turbulence Modeling by Variational Closure 269

Fig. 27. Effective Potential of E1, in the nonequilibrium system with the twisted-Gaussian
ansatz, p =p+ and p = p _ . p = p+ (dotted),p = p_ (solid).

Fig. 28. Effective potential of E2 in the nonequilibrium system with the twisted-Gaussian
ansatz, p=p+ and p=p ... p = p+ .,. (dotted ),p = p_ (solid).
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Fig. 29. Effective potential of T in the nonequilibrium system with the twisted-Gaussian
ansatz, p=p + and p = p_. p = p + (dotted), p = p- (solid).

Fig. 30. Effective Potential of E1, in the nonequilibrium system with the twisted-Gaussian
ansatz, p=p_, and with DNS. DNS with error bars.
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Fig. 31. Effective potential of E2 in the nonequilibrium system with the twisted-Gaussian
ansatz, p = p _ , and with DNS. DNS with error bars.

Fig. 32. Effective potential of T in the nonequilibrium system with the twisted-Gaussian
ansatz, p = p _ , and with DNS. DNS with error bars.



It should be kept in mind that p was the only free parameter, adjusted
to fit the mean exactly. The agreement away from the mean is thus a
success of the TG closure. This is a remarkable success, given that the
TG-Ansatz succeeds with only 4 parameters whereas the systematic
Hermite-expansion Ansatz failed to calculate the nonequilibrium potentials
even with over 200 parameters! The important general lesson of this exam-
ple is that a quite accurate calculation of effective potentials is possible by
the Rayleigh-Ritz method, even with a few parameter Ansatz rather than
with a systematic approximation procedure (such as Hermite expansions).
This makes it meaningful to compare Rayleigh-Ritz approximate poten-
tials in PDF closures with those obtained from experiment or DNS.

272 Eyink and Alexander

6. CONCLUSIONS

(1) We have proposed in this paper a refined ergodic hypothesis for
Navier-Stokes turbulence, which can be proved as a theorem in other sim-
pler systems, such as the 3-mode dynamics of Eq. (1) . The effective poten-
tials which appear in that hypothesis are subject to realizability conditions:
(i) positivity, (ii) unicity of the minimum, and ( i i i ) convexity. These
realizability conditions apply to general turbulence statistics, e.g. 1st-order
statistics such as mean velocity profiles, and not just to variables like
energy whose means must be positive. In the 3-mode system the 1st-order
statistics are rather trivial5 and have not been studied in this work.
However, we have considered the effective potentials of a 3rd-order
statistic, T(X) = x1x2x3 , which lacks also a classical realizability constraint.
We have further explained how to economically calculate approximations
to the effective potentials within PDF-based moment closures. It should be
emphasized that the computational work required to calculate a single
point on the approximate potential curve in the neighborhood of the mini-
mum is of the same order as the work required in the given closure to
calculate the predicted mean value itself. It involves a numerical fixed point
problem, Eqs. (30)-(32), of the same type as that considered in calculating
the stationary values of the moments, Eq. (19). Hence, there is little extra
expense to calculate a few points of the potential curve in the neighbor-
hood of the predicted mean.

(2) We have proposed a realizability criterion: predicted means in
PDF-closures must be rejected for statistics whose effective potentials
calculated within the same closure violate realizability. We have studied the
utility of this criterion in the 3-mode system and compared it there with

5 With a nonzero-mean force, there are nonzero means of xi, in the 3-mode system but the
contribution of fluctuations to them is not very important.



other realizability constraints. It is clear that the classical 2nd-moment
realizability conditions are too weak. They simply do not apply generally
enough, i.e. to arbitrary statistics. Even where they apply, the effective
potential realizability conditions are a useful complementary condition.
For example, the x2-Ansatz in the 3-mode system—equivalent there to the
quasinormal approximation—predicts all positive energies, but under-
predicts E1, in the cascade state by a factor of 3. However, the x2- effective
potential of E1 violates realizability and indicates failure of convergence for
that statistic. On the opposite side, the PDF-realizability condition—i.e.
the positivity requirement of the whole distribution—is too strong. In the
case both of the Hermite-expansion PDF's and the x2-Ansatz, realizability
of the PDF was violated, yet the closures made very accurate predictions
nonetheless for certain statistics. Some predictions were indeed badly in
error, but the failure of PDF-realizability gave no indication which predic-
tions might be spurious. By contrast, the effective potential realizability
conditions have been able in the 3-mode system to discriminate between
the good predictions and the bad in several cases. It should be emphasized
again that satisfaction of realizability cannot imply that the prediction is
good, but that failure of realizability should imply that the prediction is
poor.

This expectation has been well borne out in the 3-mode system. We
regard our work here as a simple case study in the use of the variational
principle for modeling purposes. By a combination of physical insight,
information from DNS, and exact constraints from the dynamics, PDF
closures were formulated to predict the quantities of interest. The realiza-
bility conditions on the effective potentials of those statistics were then used
as a "screen" or "filter" to eliminate a priori the poor predictions. In the
present case, predictions which failed to pass the realizability check were
generally at least 3-4% from the correct answer and, in most cases,
much worse than that. On the other hand, the predictions which passed
the realizability check were sometimes very close and sometimes far off.
However, even when far off—as the predicted E1 in the TG Ansatz for p
near 0 or 1—the closures which satisfied the realizability conditions could
here, by adjustment of free parameters, correctly postdict the given statistic.
It cannot be concluded from this study that the same will hold in Navier-
Stokes turbulence, but we reasonably expect it to be so.

(3) We have also considered an optimization principle: the "optimum
value" of any free parameter in a PDF closure to "best" predict a given
mean statistic ought to be one for which the corresponding effective poten-
tial is stationary under variation of the parameter. Although there is a cer-
tain theoretical basis, the utility of the optimization principle as a practical
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tool is not so clear. In fact, in the 3-mode system its success has been
mixed. It worked exceedingly well to select a for the Hermite-expansion
Ansatz in the equilibrium case, and it also accelerated convergence for
increasing N in the near-equilibrium cascade state. However, it performed
rather poorly to select p for the twisted-Gaussian closure in the non-
equilibrium cascade state, at large Reynolds number. A basic difficulty is
that the stationarity condition is only guaranteed to give the correct poten-
tial if one varies over the full, infinite-dimensional set of trial states. Unlike
the analogous Rayleigh-Ritz method in quantum mechanics, there is no
monotonicity in the approximation. Adding a few parameters to an Ansatz
may even worsen the agreement with the true answer, for any finite number
of parameters. For this reason, one cannot be confident that the principle
will truly choose the "best" value of the parameters in any finitely-
parameterized Ansatz. The main virtue of the "minimal sensitivity prin-
ciple" as an a priori selection device is that it can protect one from making
far worse choices than the optimal one. Lacking other relevant informa-
tion, it is therefore a sensible a priori selection principle. The greatest
benefit appears to occur within convergent approximation schemes, for
which the rate of convergence can be substantially accelerated. Further
study of this point is required.

(4) In future work we shall make a similar investigation for time-
dependent turbulence, where the effective action plays an analogous role to
the effective potential in the statistical steady-state. We have shown else-
where(11) that there is a Rayleigh-Ritz algorithm available also to approxi-
mate the full effective action functional within PDF closures. The validity
of the realizability criterion and optimization principle in that context is an
important question in assessing their practical potential. Indeed, many of
the flows of greatest engineering interest are statistically time-dependent,
e.g. high-Reynolds number flow past an accelerating object. The effective
action is also a tool that can be brought to bear in statistical steady states
without assuming the refined ergodic hypothesis, which could be false in
certain applications. Work in these directions is already in progress.

It is clearly crucial to examine the utility of the novel realizability con-
ditions within PDF closures for realistic systems, such as Navier-Stokes
turbulence. Some initial exercises have been carried out, with gratifying
results. These include free decay of homogeneous, isotropic turbulence
governed by Navier-Stokes dynamics(44) and turbulent advection of a
passive scalar.(45) For the method to be practically useful the realizability
conditions on the approximate potentials must fall into a certain middle
ground. On the one hand, the conditions must be sensitive enough that
they detect a significant fraction of poor predictions in advance, but, on the
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other hand, they should not be so over-sensitive that they disqualify all but
a small number of predictions, many of those rejected being adequate for
practical engineering purposes. It remains to be seen whether the proposed
new conditions will meet this objective. To establish their utility will
ultimately require more than anecdotal studies of particular systems, as
here. What is really required is a careful study of a large number of
representative flows to establish that the method leads in fact to a statisti-
cally-improved predictive ability. However, the present work already gives
tantalizing evidence for the method, which offers a real prospect for some
a priori information in turbulence modeling. We expect that the variational
approach will enable turbulence modellers to exploit in a practical way the
many advances in theoretical understanding of small-scale turbulence
which have been made in recent years. Novel PDF closures can be readily
developed within our scheme. In fact, any good guess of the turbulence
statistics may be input as a trial Ansatz in our variational method.

APPENDIX 1. BACKGROUND ON THE 3-MODE MODEL

The 3-mode stochastic dynamical system is specified by the Eqs. (1)

i= 1, 2, 3 which are equivalent for v, = 0, i= 1, 2, 3 to the Euler equations
of solid-body rotation. The variables xi, then represent the components of
angular momenta Mi, associated with the principal axes, and the Ai, are
given as

in terms of the corresponding moments of inertia Ii,. fi, has the interpreta-
tion of an ith component of imposed torque in the body-frame. Corre-
spondingly, for vi, = fi, = 0 there are two independent quadratic integrals of
motion:

and

In the solid-body analogy the first integral E corresponds to one-half the
total square angular momentum M2

1 + M2
2 + M3

3 and H + E/I3 corresponds



276 Eyink and Alexander

to the rotational kinetic energy M2
1/2I1 + M2

2/2I2 + M2
3/2I3. However, in

the fluid mechanical interpretation it is instead E that corresponds to
energy, and we thus use that terminology here. Because there are two
integrals of motion and only 3 degrees-of-freedom, the system is exactly
integrable and may be solved by quadratures in terms of Jacobi elliptic
functions (see refs. 19 and 21, or 46, Section 37). Thus it is necessary in this
instance to use random forcing to obtain a well-defined statistics.

When the forces fi, are chosen to be Gaussian and white-noise in time;
i.e.

then the dynamics is still Markovian and the Liouville (Fokker-Planck)
equation is

It is easily checked that when the fluctuation-dissipation relation (FDR),

for i=1,2 ,3 , is imposed, then the equation has as its stationary solution
the absolute equilibrium distribution

The dynamics for this solution is statistically time-reversal invariant, i.e.
detailed balance is satisfied, since the equivalent "potential conditions" of
ref. 47 are satisfied. Hence, there are no nonvanishing fluxes or irreversible
cascades when the FDR is imposed.

However, the stationary states will generically be nonequilibrium flux
states when the FDR is not satisfied. To keep the analogy with fluid turbu-
lence, we generally strongly force the mode i with the coefficient Ai, of
opposite sign as the coefficients Aj, Ak for the other two modes j and k,
which are instead strongly damped. In fact, it is well-known that, of the
three steady-state solutions of the Euler solid-body equations corre-
sponding to rotations about each of the three principal axes, the rotations
around the axes of lowest and highest moments of inertia are stable while
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rotation around the axis of middle inertia is unstable (see ref. 48, p. 203).
In our work we have always taken A 1 =2, A2 = A3=— 1. Observe that the
1-mode then corresponds to an unstable, large-scale mode, while 2 and
3-modes correspond to stable small-scale modes. There is an irreversible
energy cascade set up from the forced mode-1 into the damped modes-2
and 3. This is reflected in the development of a negative steady-state triple
moment, <x1x2x3> <0, which is associated with energy transfer out of the
1-mode and into the 2 and 3-modes. Because these steady-states are irre-
versible statistical equilibria, there are no a priori expressions that can be
written for them, as for the absolute equilibrium in Eq. (109). We note only
that, as a consequence of the statistical invariance of the forces to reflection
of sign, f i , • ->—f i , independently for each i=1,2,3 , these steady-state
distributions possess a group of symmetries, isomorphic to the Klein
Viergruppe, generated by the reflections:

Furthermore, when one chooses k2 = k3, v2 = v3, then the steady-state dis-
tribution is also invariant under the permutation of 2 and 3-modes:

These statistical symmetries are very helpful in modeling, both to guess
suitable PDF Ansatze and to reduce the required number of parameters in
them.

APPENDIX II. THE OPTIMIZATION IN A PARAMETER

Let V*(w; c) be the Rayleigh-Ritz potential in a closure, depending on
a free parameter c. Then there is always a trivial stationary value at each
w given as <W> u * (c) for some choice of c; i.e. at any mean value of W
attainable within the closure. In fact, c is a stationary value itself at the
corresponding w. Let w * (c ) = < W)u* (c) be the closure mean, as a function
of the free parameter c. Since V * (w * (c) ; c) = 0 it follows by differentiation
in c that
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for all c. However,

Thus, it follows from Eqs. (114)-(115) that

if w = w * (c) , as claimed. However, it is also then true that V*(w; c) = 0, so
that if that value of c were substituted as the "optimum value" at each w,
then the resulting potential would be =0 whenever w = w * ( c ) for some
choice of c!

The difficulty with this, obviously, is that c is a constant parameter in
the PDF, and the stationary point, if it exists, must be the same value c*

for all values of w, i.e. Eq. (116) must hold simultaneously for all w with
a single c*. It can be easily seen that Eq. (116) holds for all w with c = c*

only if

for all h. Indeed, differentiating Eq. (116) with respect to w at C = C* , , it
follows that

Furthermore, differentiating w*(h)*(w; c); c) = w with respect to c gives

for all w and c. Putting c = c* and using Eq. (118) for that value, one
obtains Eq. (117). In particular, this equation must be true for h = 0. This
means that

is a necessary condition that c* be a stationary point for the entire function
V*(w; c). It is therefore interesting to consider such special parameter



values c*, of the closure where the means obey Eq. (120), since these are the
candidates to be optimum values for the variation of V * ( w ; C ) . Observe
that these have an interesting interpretation as the points of minimal sen-
sitivity(32) of the means w *(c) to variation of c. If such a value of c* were
to exist and, further, give a stationary point of V*(w; c), then that value
would be the optimal value of the parameter c according to the variational
principle. Notice that, while c* must be a constant for each variable W of
the system, the constant may be distinct for different choices of W.

APPENDIX III. PERTURBED DYNAMICAL VECTORS
IN THE CLOSURES

We list here the perturbed vectors fields V(u, h) used in the closures to
calculate the approximate effective potentials VE1, V'E2 and VT. We have
denoted as h = ( h E 1 , h E 2 , h T ) the perturbation field parameters for each of
the three random variables considered. From the V-vector the A-matrix is
easily calculated as in Eq. (29) by differentiation with respect to u.

III.1. Hermite-Expansion Ansatz

The perturbed vector field corresponding to moment index n is given
here by
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where

with L(n; m) already given by Eq. (46), and with

for i, j, k a cyclic permutation of 1, 2, 3 and
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III.2. Chi-Square Ansatz

To simplify notation we introduce another field hE3 corresponding to
E3(X) = 1/2x2/3. We then have for i = 0:

for i=1,2, 3:

and, for i = 4,

III.3. Twisted-Gaussian Ansatz

For i = 0;

for i=1:

for i = 2:
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and, for i = 3,
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